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Abstract  

The basic me thods  of  solving fully symmetr ic ,  nonlinear  theories are stated. These are 
discussed in terms of  Green's  funct ion methods  and self-consistent field theory methods.  
The equivalence o f  many-body  theory based on Green's  funct ions  wi th  q u a n t u m  field 
theory,  on which  the  self-consistent field theory is based, is reviewed. A number  of  
similarities, differences, and caut ions involved wi th  these me thods  are determined.  In 
particular, since very of ten  bo th  m e t h o d s  are based upon use of  the  adiabatic theorem,  
which is typically not applicable to the  models  under  consideration, a deviation in the 
self-consistent theory  is discussed that  avoids this problem. A similar idea is used for 
solution o f  models  with the  funct ional  integral method .  Ferromagnet ic  models are 
used at various places in illustrating some of the ideas. By contrast ing these me thods  
further  insight may  be gained into solving nonlinear,  physical theories. 

1. Introduction 

One of the most important problems in physics today is the solution of 
fully symmetric, nonlinear theories, with Hamfltonians expressed in terms 
of original variables (as compared to observed, physical variables). Some of 
these, for example, are the theories of ferromagnetism, superconductivity, 
and superfluidity. There appear to be four basic methods of solution that 
come to mind from the literature: (1) solution of the equations of motion 
in original variables; (2) perturbation theory, using Feynman diagrams, etc.; 
(3) functional integral approach; and (4) canonical transformation to the 
correct set of physical variables. Now (1), (2), and (3) typically involve 
Green's functions, whereas the fourth is roost often handled by a self- 
consistent selection theory, either of wave functions (Hartree-Fock theory) 
or of Hilbert spaces (Umezawa's self-consistent field "theory). The overall 
objective of each one is looking for the correct combination of original fields 
that produces the effects and characteristics that are physically observed and 
measured. However, file approach to doing this is very different in many 
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ways, and yet, similar in other ways for the Green's function methods as 
compared to the self-consistent field theory. In this paper I will discuss some 
of the aspects of these methods and contrast them for similarities, differ- 
ences, and a major caution to be aware of in using them. I strongly feel that 
coordination and unification of the ideas and results of these methods in 
treating the same or very similar problems may well lead to further insight 
and understanding of some of our basic physical phenomena. 

2. Green's Function Methods 
In this section the definition of some of the properties of and ways of 

evaluating Green's functions will be briefly considered. Most of these will 
be of interest for the discussions in later sections. 

The Green's functions describe the response of a system to external dis- 
turbances such as a varying external field or a strange particle moving through 
the system. They allow in a natural way the introduction of matrix elements 
connecting states differing in the number of particles. For example, a one- 
particle Green's function describes the motion of one particle added to a 
many-body system, and a two-particle Green's function describes the motion 
of two added particles. The physics of the many-particle medium is examined 
by studying the propagation in it of externally produced excitations. The 
propagation characteristics are expressed through one- and two-particle 
Green's functions defined as follows: 

GI (l°l, 202) =--i<T{~a1(1)qz;2(2)}) (2.1) 
G2(1°12°2, 303404) - ( - i ) 2 (T{~ , ( I )~ : (2 )~3 (3 )~ (4 ) }>  (2.2) 

where ~PS, (1) and q%1 (1) are the creation and annihilation operators 
associated with particles of spin oh, position rl, and time tl, etc., and Tis 
the Wick time ordering operator (Hugenholtz et al., 1969a). 

There are two main methods of determining the Green's functions: 

(1) The first method is perturbation series expansion of G in powers of 
the interaction potential, using the noninteracting system as the zero-order 
starting point. This diagrammatic technique has many good points. It enables 
one to make fairly well-defined approximations in which one chooses a 
certain class of diagrams and sums them, often to all orders in perturbation 
theory. At times it is also possible to get a rough idea of the importance of 
the terms that are neglected. However, it is hard to know how far one can 
trust perturbation theory. A good deal of juggling with the terms in the 
perturbation expansion is often done, and this should not be done unless 
one knows that the series is absolutely convergent. Further, for some of the 
models we are mainly interested in in this paper, such as superconductivity, 
the series does not converge (Hugenholtz et al., 1969b). 

(2) The second method is solving the equations of motion for G. Here 
one constructs (3G/3t) from the known time evolution of the field operators. 
This ordinarily leads to a set (probably infinite) of coupled equations for 
higher and higher order Green's functions. In certain cases physical arguments 
can be used to truncate the set and obtain a closed set of differential equa- 
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tions for G. Because of the difficulties mentioned above with the perturbation 
methods, it appears that the equations of motion methods are to be pre- 
ferred ab initio. Here, however, one often has not such a clear idea of the 
terms one is neglecting in the approximations. Usually, one is making some 
sort of higher random-phase approximation, and also it seems more difficult 
to derive exact results from this formulation (Hugenhottz et al., 1969c). 
Both methods have proven useful in certain problems, but neither is too 
good for the Kondo effect, although perturbation theory seems a little 
better (Keiter and Kimball, 1970). 

Some of the above-mentioned difficulties led Evenson, Schrieffer, and 
Wang (t970) in their analysis of the Hubbard and Anderson models for 
itinerant ferromagnets to a third method using Green's functions, the 
functional integral approach: 

(3) As applied to the Anderson model (Anderson, 1961), the essential 
steps are as follows: (a) rewriting the two-body exchange interaction as a 
perfect square, using the properties for fermion occupation number 
operators: 

Un~n, ~ -½ U(n, t - n.~) 2 + one-body term (2.3) 

where Uis the Coulomb interaction, n is a number operator, and the arrows 
refer to spin. (b) Separate the Hamiltonian Hin to  bflinear terms, Ho, and 
higher-order terms, H1. Since Ho and H1 do not commute, use the Feynman 
time-ordering trick: t 

[A + B] = T exp f d'c(Ar + B~) (2.4) e x p  

0 
where ~- is a fictitious "time," T is the chronological ordering operator, which 
orders products like ArBr,Ar; chronologically with larger "times" to the 
left. Thus, A r and B r commute if one operates with T at the end. (Remember 
this step, in particular, when we later discuss alterations in the self-consistent 
field theory.) 

(c) Use the Stratonovich (1958) trick of reducing the partition function 
with a two-body interaction term to an average over partition functions with 
one-body interactions in a random-averaged, external "magnetic" field: 

exp (rra 2) - f dx exp [-Trx 2 + 2ax] (2.5) 

where for this model, 

exp (ha 2) ~ exp -/3 dr - ~ (ntr - n~r)2 (2.6) 

(d) Then the partition function (Z = Tr [exp (-j3H)]) becomes 

where Z(~) is 

Z(~)= Tr{Texp[ - j  dr(t3Har - c~(r)(n%- nsr))]} (2.8) 
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At this point the partition function for tile two-body system has been 
reduced to an average over partition functions in an external "magnetic 
field" }(r). This is an exact transformation-the external field and Gaussian 
weight factor being arranged to give the precise effect of the true exchange 
interaction in the original Hamfltonian. The problem now involves (t) find- 
ing Z(}), and (2) doing the functional integration; and at this point Green's 
functions are introduced in the calculations. Either or both of these could 
involve approximations (Evenson et al., 1970). Then physical properties 
like magnetic susceptibility, etc., can be calculated. 

Having explored the three basic methods using Green's functions, let us 
look briefly at a general model of itinerant ferromagnetism using Green's 
functions for analysis to see what quantities and results are typically found 
so these can be compared with those of the self-consistent field theory in a 
later section. The occurrence of ferromagnetism in a system of fermions of 
spin ½ has been discussed extensively by Rajogopal et al. (1967). The 
Hamiltonian of the fermions is given by 

+ ½ ~t~,~2 fd31d32 dq dt2 ~l(1)~ , (2)V(1-2)~a~(2)~%(1)  (2.9) 

where the ~'s  have the same description as those in equations (2.1) and 
(2.2) and have the usual anticommutation algebra. V(rl) is a background 
potential, and V(l-2) is a short-ranged, instantaneous interaction potential 
between the fermions. Time dependence of operators is in the Heisenberg 
representation, and expectation values (O) of an operator O can be con- 
sidered as being in the grand canonical ensemble. The magnetization operator 
is given by 

M= ~ dalpz( t )  = f d a l  [~ , ? (1 )~ t . (1 ) -  ~,?(1)q*+ (1)1 (2.10) 

As discussed above, the physics of the many-fermion medium is studied 
using Green's functions, through which the propagation of externally 
produced excitations are expressed. See equations (2.1) and (2.2). Here the 
sources of the excitations are classical fields U(1 oa, 2o2), entering through 

H '=- E fdalda2U(l(r1,2~e)"It?%(1)qlo~(2) (2.1t) 
~Yl O-2 

and can be interpreted in terms of nonlocal fluctuations in the internal 
magnetic field or the chemical potential. The effects of the sources are 
traced through functional derivatives of the Green's functions, such as the 
two-particle correlation function 

L(1 o 1202, 303404) = G2(1 a 1 202, 303404) - G 1 (1 Ol, 3o3)G 1 (202,404) 

=6G1( l ° i ' 3 °3 )  V=0=SG1(2°2'404) t (2.12) 
6U(4~4, 2o2) 6U(3%, lOl) v=0 
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From the Green's functions one can obtain many important physical 
quantities, The magnetization ~ I )  can be expressed in terms of G 1, the 
average energy (H) in terms of G1 and G2 or L, and the susceptibilities and 
the specific heat are closely related to L (Rajagopal et al., 1967). Also, from 
the Green's functions one can express the manner in which the interaction 
V(1-2) affects the propagation of an excitation in the medium, find a 
measure of the interaction between the excitations in the medium, and find 
by iteration an expression for scattering of the excitations (Rajagopal et al., 
1967 and Baym and Kadanoff, 1961). Notice that this all involves looking 
for the correct combinations of  original fields, the ~ ' s ,  which gives the 
physical quantities and effects just stated. This is also the objective of the 
self-consistent field theory, but the approach is much different. 

As will be discussed later, one of the basic results of the self-consistent 
field theory is the non-incidental occurrence of Goldstone-type modes in 
the theories we are discussing. Now is this a basic result in file Green's 
functions methods? For file model just above, let us write down the quantity 
giving a measure of  the probability of a spin-flip at 1 : 

( j0( l t ,  $)) ~ ('~I,$ ?(1)) = - i G l ( l f ,  15) (2.13) 

Then if the system is uniform, (Pz(1)) is independent of position, and one 
can use the Fourier transform function Ai(k, co) given by 

Ai(k, co) = j" d41 exp {i[co(t 1 - t 2) - k - ( r  1 - r2) ] }.( T~j i ( l f ,  $)]o(2f, $))) 
(2.14) 

to obtain, as R. E. Mills (1970) did, the following equation: 

coAo(k, co) - k "A(k, co)= ((Pz)> (2.15) 

As pointed out by Mills, the arguments of Lange (1965) concerning the 
Goldstone mode apply, and one concludes that when (Pz) does not vanish, 
i.e., a continuous rotation is no longer an invariant operation, the functions 
A i must have singular parts when co and k vanish if equation (2.15) is to be 
satisfied. Thus, the implications of Goldstone-type modes are here if looked 
for hard enough. Next we will briefly review the self-consistent field theory 
and some of its implications. 

3. Self-Consistent FieM Theory 

As previously indicated, we begin the study of our physical system by 
writing down an appropriate Hamiltonian H = Ho +/tint for the system in 
original variables and second-quantizing it. It gives in general nonlinear 
equations which we then try to solve in order to deduce the results that can 
be compared with experiments. Umezawa et at. (1965) have formulated this 
step as a dynamical mapping between the original set of annihilation and 
creation operators (ak, a J ) ,  in terms of which the model is written down, and the 
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physical annihilation and creation operators (bk, bk~'), in terms of which the 
observed stationary states are written (also referred to as quasiparticle operators): 

ak = f(bk) = C+gkbg + hkbJ  +Np(bk) (3.1) 

where C stands for a constant andNp(bk) for higher-order normal products. 
Equation (3.1) is one representation of the fourth basic method of solution 
outlined in the introduction of this paper, where the a's here correspond to 
the Fourier transforms of the q"s in Section 2. The expansion coefficients, 
such as g and h, are to be determined so that when equation (3.1) is inserted 
into the original Hamiltonian, H takes the form 

H = ~ Ekbktbk+C+Qv(bk)=Ho(bk)+Qv(bk)  O.2) 
k 

where Qv(bk)-~ 0 when the volume V becomes very large (maybe infinite), 
and Ek is a c number. The bk's satisfy the same commutation (anticommuta- 
tion) rules as the ak's (spoken of as a canonical transformation). 

In most cases the determination of the coefficients in equation (3.1) is 
carried out in two stages. First we make a canonical Bogoliubov-type trans- 
formation T from the aa:'s to the intermediate bk fields, and then we look 
for a matrix S which takes us from the bk's to the bk's (physical fields) in 
such a way that 

bk = ( z ) l /2bk  + Np(bk) (3.3) 

where Z is a c number. 
Under the Bogoliubov-type transformation T and upon normal-ordering 

our operators (denoted by :X :) and eliminating off-diagonal bflinear terms, 
our original Hamiltonian becomes 

H(-bk) = Ho(bk) + :Hint(bk ): (3.4) 

Then Umezawa proceeds to eliminate the higher-order (Hint) terms by 
employing the adiabatic theorem. This is done by taking 

-bk = S-lbk S (3.5) 

where, to first order in :Hint(bk) :, 
0 

S = 1 + ( - i )  j :Hint(t): dt 

and 

with 

Hint(t) = exp (et) Hint(b k exp (-iEgt)) 

e -  z p , - ( I / 3 )  < p  < 0  

for large V. From equation (3.6), equation (3.4) becomes 

H(bk ) -+ S-1H(bk )S = Ho(bk) + Qv(bk) 

(3.6) 

(3.7) 
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where Qv(bk) is an operator such that the limit of its matrix elements taken 
between any two states of the physical Fock representation of the bk's as V 
becomes large (maybe infinite) is zero. 

The important result of using the adiabatic theorem above [essentially 
equation (3.6)] is that Qv(bk)  in equation (3.7) then has energy-conserving 
matrix elements with respect to the physical Fock-space states. It is this 
energy-conserving constraint that causes 

lira Ov(bk) -+ 0 (3.8) 
V'--~ e~ 

as will be indicated below. 
The motivation for the above technique came from a proposal by Gunnar 

K~ill6n (1968) showing the credibility of obtaining bilinear Hamfltonians in 
general when applying the adiabatic theorem. Again, we start with the 
Hamiltonian, H=/4o + Hint. Then we introduce formally a coupling constant 
that is weakly time dependent, writing H as 

H = Ho + g exp (et)Hint (3.9) 

where e is a very small positive number and in the final result we let it go to 
zero. The general idea is that the coupling constant, g(t) = g[exp(et)], should 
have its physical value for all finite times where the interaction is important 
but that it should vanish sufficiently rapidly for large absolute values of the 
time. 

Writing down the equation of motion for H, we have 

i dH(t) = [H,H] + lOll(t) = i dg(t) 3[Hintg(t)] (3.10) 
dt 8t dt ~g 

Integrating both sides from tl to t gives 
/7  ¢ . 

H(t) = H(tl)  + f g(t') a[Hintg(t)] dr' (3.11) 
q 0g 

In particular, letting t 1 -+ - ~ ,  we have 
t 

H(t) = H o (incoming fields) + f g(t') 0 [Hintg(t')] dt' (3.12) 

Now considering the off-diagonal matrix elements of the second term on 
the fight-hand side of equation (3.12) and putting them in the form of g(t) 
above, we have 

t 

- ~  3g 

t 

= f exp [ - i  (Ea - Eb)t' ] (a [ Hin t I b) eg exp (+ et') dr' 

= [e + i(L a - Eb) ] -1 e (a[Hin t [b)g exp (et) (3.13) 



548 ALVIN K. BENSON 

Then taking the limit as e -~ 0, this expression gives zero unless E a = E b. The 
conclusion to be drawn is that off-diagonal matrix elements of the last term 
on the right-hand side of equation (3.12) must have energy-conserving 
matrix elements in order to give a contribution. 

However, the proof is incomplete in one place namely, in the second line 
of equation (3.13). Since the Hamiltonian is not exactly time independent 
due to the introduction of the adiabatic switching factor, exp (et), it is 
expected that 

(a [ Hin t ( t ' )  [ b ) = e x p [ - i ( E  a - Eb )t'] (a [Hin t l b) 

holds only in the limit as e -+ 0, assuming that this limit exists. Otherwise, 
the states are time dependent and equation (3.13) may not follow. Thus, it 
is assumed that the solutions exist in the adiabatic limit when e ~ 0. However, 
as Kiflt6n points out, at present there is no proof of this independent of per- 
turbation theory. Notice that it is precisely off-diagonal elements of this same 
type which give rise to asymmetry and condensed phases when using Green's 
functions methods for models such as the ones we are considering (Mattuck and 
Johansson, 1968). Thus, both the self-consistent field theory and Green's 
functions methods could break down if the limit taken in equation (3.13) 
does not exist. 

However, as pointed out by Benson (1973) and Benson and Hatch (1973), 
the adiabatic theorem need not be used to obtain the energy-conserving 
constraint above. This condition was instead obtained for the Heisenberg 
ferromagnetic model by finding the condition for [Hbi (bk)  , Hquad(bk) ] = 0, 
a possibility alluded to by Umezawa and Leplae (1964) in a footnote of one 
of their papers, where [,] stands for the commutator, "bi" for bilinear, and 
"quad"  for quadrilinear. For the Heisenberg magnetic-exchange model this 
places conditions upon the exchange integral of the interaction term, leading 
to a nearest-neighbor interaction. The self-consistent field theory of  Umezawa 
then involves the following steps: (1) Transform from the original variables 
to a generalized, parametrized set of variables (dynamical map), [see equation 
(3.1)]; (2) normal-order the operators in H by using Wick's theorem; (3) 
eliminate off-diagonal terms so as to determine the coefficients of the 
dynamical map (these are self-consistent equations); (4) show that the 
higher-order (higher than second, and thus involved in Hint) terms have 
energy-conserving matrix elements in our physical Fock space w i t h o u t  using 
the adiabatic theorem (see Benson, 1973, for an example clearly showing 
this); (5) take the liulit as V becomes large (maybe infinite) in order to 
eliminate the higher-order terms and leave one with a physical, bflinear 
Hamiltonian (see Benson, 1973, where this bflinear Hamiltonian obviously 
expresses a ferromagnetic system, having been derived from the totally 
rotationally symmetric Heisenberg magnetic-exchange model using the five 
steps of this self-consistent field theory). 

It is very interesting to note the similarity in technique of step (4) for the 
self-consistent field theory with step (b) of the third approach based upon 
finding Green's functions, the functional integral approach. Both involve 
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looking for commutation between tlbi and higher-order terms in H, making 
Lip/z/int. It is apparent that in both cases one is looking for a separation of 
the Hilbert space upon which Hbi is based and that upon which H = Hbi + Hint 
is based. This allows for a separation of partition functions in the functional 
integral method and of Hamiltonian terms in the self-consistent field theory 
method. Notice that in the former method this leads to just a separation into 
direct products of Hilbert spaces, whereas in the latter method the implica- 
tions are much farther reaching [when step (5) is carried out], for then we 
have disjointness of  Hilbert spaces, or inequivatent representations (Benson 
and Hatch, 1975). It would appear, however, that there is a definite con- 
nection between writing the partition function, Z, as a direct product and 
eliminating higher-order terms in the Hamiltonian. This is indeed the case, 
as will be determined shortly. However, to see this more clearly let us first 
review some of the results of Benson (1973) and Benson and Hatch (1973) 
when the self-consistent field theory outlined above is applied to the 
Heisenberg-exchange model. 

The Hamiltonian of the model can be written as 

H = -  ~ ~ Jl- l '  SI"S* ' (3.14) 
14: 1' 

where SI is the spin operator for the lermion at the lth lattice site, and ./i-1' 
is the exchange integral, typically taken as large only when 1-1' is one or two 
lattice spacings. This is then second-quantized and written in terms of 
annihilation and creation operators, the a's. We know that the model (S- S 
form) is totally symmetric with respect to spin orientation, and there is no 
reason a priori to expect H to describe a ferromagnetic configuration (all 
spins aligned in a particular direction), since this represents asymmetry. 
When the five steps of  the self-consistent field theory above are carried out, 
one obtains a Hamiltonian in physical variables of  the form 

H--  - ~ Hi ,e l  z (3.15) 
1 

where 5 e is the spin component written in terms of physical variables, the 
b's, and B 1 is a constant depending on J l - f  and expectation values of the 
operators. This obviously describes an assembly of independent spin-½ 
particles, and Bl carl be interpreted as an internal magnetic field produced 
by the interactions between the fermions, and all spins are aligned in some 
manner by this field. This then is indeed a ferromagnetic representation for 
the Heisenberg-exchange model. 

Thus, if one compares the general results of the self-consistent field theory 
applied to the above model [equation (3.14)] with the functional integral 
approach applied to the Anderson model (see Section 2), one sees that they 
both lead to bilinearization in an effective, averaged-out magnetic field. Thus, 
writing the partition function, Z, as a direct product and eliminating higher- 
order terms in the Hamiltonian appear to be equivalent steps, but formulated 
in a different context. 
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Continuing with some of the results obtained when one applies the self- 
consistent field theory to the Heisenberg-exchange model, one finds explicitly 
that Goldstone's theorem (Lange, 1965) is satisfied by comparing the spin- 
rotation symmetry of the system in original variables with that same sym- 
metry when written in terms of physical variables. The symmetry trans- 
formations for the original fields were found to take entirely different forms 
for the physical fields, spoken of as a dynamical rearrangement of symmetry 
(Leplae et al., 1967), and it was found that the original spin-rotation sym- 
metry transformation is taken up by physical "massless" fields (Goldstone 
modes) and that the Bose-Einstein condensations of these fields in the 
physical (ferromagnetic) ground state produce the asymmetry by "printing" 
the spin quantum number on that state (Benson and Hatch, 1973). These 
results come from a quite natural flow of thoughts and questions and give a 
very good explanation for the microscopic mechanism producing observed 
macroscopic asymmetry. The Goldstone-type modes and results described 
above appear in many second-order phase transitions where a symmetry is 
broken, so the equations and ideas above are indicative of a more general 
problem than the restriction to magnetism might possibly indicate. Next we 
look briefly at the basic equivalence between many-body theory based on 
Green's functions with quantum field theory, on which the self-consistent 
field theory is based. 

4. Many-Body Theory and Field Theory 

We write the Hamiltonian, H, for a system of many particles interacting 
with each other as H = Ho + Hint (as done in the previous two sections), and 
note that when this is written in second-quantized form it has a great analogy 
with field-theoretical Hamiltonians. For example, let us consider, as did 
Van Hove (1961), a Fermi gas of N identical particles in a cubic container of 
volume V, and apply periodic boundary conditions. Then H = Ho + Hint is 
given by 

H o = (1/23/) E 12al?al 
l 

Hint = ½(Srr3/V) 2 
I,,12,1~,I+ 

where we will take the mass, M, to be ½, v is the interaction potential, l refers 
to momentum, and the a's are annihilation and creation operators. 

The unperturbed ground state, l~b0), of the Fermi gas is obtained by filling 
all states of momentum ill ~< iv; with particles, leaving all other states un- 
occupied, where for spin-½ particles the density is given by 

p = (p;a/3~r2) =N/V (4.2) 

[This Hamiltonian is very similar in form to that used previously in equation 
(2.9).] 
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Now note the analogy with quantum field theory: I¢0> corresponds to 
the vacuum state ,  a l  t corresponds to creation of  a particle with tlt > pf, and 
al to the creation of  an antiparticle Ill ~< pf. However, there is a difference 
since the energy of  the ground state (perturbed as well as unperturbed) is a 
quantity proportional to V, and so for large V and fixed p one sees that for 
the many-body problem one will have to treat the limit V-+ oo more care- 
fully than in field theory, when all quantities usually calculated have finite 
limits for V-+ ~o (Van Hove, 1961). See step (5) of  the self-consistent field 
theory method (Section 3). 

Analogous to the ideas of  Gell-Mann and Low in field theory, Goldstone 
postulated a perturbed ground state given by 

t ',I'o) = U(0, _oo) l q~o } (4.3) 

where U(t, to) is the solution of  

i3U(t, to) 
=HintU(t, to), U(to, to) = 1 (4.4) 

hot  
The limit to ~ _~o in U(0, - ~ )  is taken by adiabatic switching on of the 
interaction. One finds quite easily that the difference between the perturbed 
ground state energy, Eo, and the unperturbed ground state energy, %,  is 
given by 

(~bol Hint U(0 ' _o~) t 4)0) 
[Eo - %]  = (4.5) 

( ¢o t u O ,  _oo) I ¢o) 

where for the fermion gas, e o = Vp}/lOrr 2. Then one can carry out a dia- 
grammatic analysis of  the two matrix elements using the iterative solution 
to equation (4.4), 

t t 

U(t, t o ) =  1 + i (- i /h)n(1/n ') f  dq""  S dt .T[Hint( tO'"Hint( tn)]  
. : 1  to to (4.6) 

where T is the Wick time-ordering operator. Diagrams are constructed by 
representing each Hint  by a vertex, with the same left to right ordering of  
vertices in the diagram as of  the corresponding Hint 'S  in equation (4.6). 

Assuming all energies are redefined by subtracting eo, so that Ho is 
replaced by Ho - eo, and that (~o t q~o) = 1, one then has as in field theory, 

( ~o l Hint U( O, - ~ )  l ~o) = [ ~ ( ~o l {Hint U( O, - ~ )  } 81~o ) ] ( (~o [ U(O , - ~ )  ' qSo ) 
(4.7) 

where ([ {.  • • }~ J} means the contribution of  a specific diagram 6 to the 
matrix element (t " " " J), and where E8 extends over all connected diagrams. 
Hence ,  

[E 0 _ %] = ~ (¢o[{HintU(0 ' _o0)}6 I¢o} (4.8) 
6 
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The importance of the expression E o - e o is that every term in the sum has 
the form VX finite quantity for large V, which is the correct behavior in V 
expected on physical grounds for E o itself (Van Hove, 1961). 

Furthermore, one finds that 

U(0, -oo) I ¢ o) (4.9) 
lq'o) = (¢01 u(0, -oo) t 4 o) 

and that the exact one-particle Green's function is given by 
+ 

G(k, t)= i (4°[T[ak(t)ak' (O)U(+°°'-°°)] t4o> (4.10) 
<4ol U(o% -oo) 14o> 

where all quantities are again in the interaction representation and U( oo, - = )  
is the S-matrix like that of field theory. It is then useful to combine equation 
(4.6) with equation (4.10) to determine the Green's function. 

Therefore, many-body theory based upon the determination of the Green's 
functions above (essentially method one in the introduction) is basically 
equivalent to quantum field theory. However, note that here, as well as in 
the original formulation of the self-consistent field theory (Section 3), the 
adiabatic theorem has been used to obtain final results. Problems and cautions 
with this were discussed following equation (3.13). Also, one sees immediately 
from equation (4.9) that one is assuming a one-to-one correspondence 
between the states of the proper H0 and those of the interacting Hamihonian, 
H =/4o + Hint (see Nozi~res, 1968). But for the type of theories we are con- 
sidering in this paper, this is usually not the case. For example, it is clearly 
shown by Benson (1973) that for the Heisenberg-exchange model there is not 
a one-to-one correspondence between paramagnetic states and ferromagnetic 
states. 

Consequently, when one is careful and selects a correct Ho, etc., so that 
the adiabatic theorem holds, then many-body theory based on determining 
Green's functions is essentially equivalent to quantum field theory. However, 
one needs to be very cautious and may want to give strong consideration to 
using the altered self-consistent field theory outlined and discussed in 
Section 3. 

5. Some Similarities and Differences 

After the discussions, reviews, and developments concerning the basic 
methods of solving nonlinear theories in the preceding tbur sections, let us 
contrast the methods involving Green's functions with the method typically 
involving the self-consistent field theory. First let us consider some of the 
similarities. 

(1) As pointed out in Section 4, one can employ the techniques of quantum 
field theory to solve nonlinear theories using Green's functions or the self- 
consistent field theory. However, as emphasized, one must be very careful 
when the adiabatic theorem, which is typically used, is employed. In the 
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case of using Green's functions, the problem comes from the fact that for 
many fully symmetric, nonlinear theories, such as ferromagnetism, super- 
conductivity, superfluidity, and other phase transition phenomena, there is 
not a one-one correspondence between the states of rio and those of 
H = Ho + Hint, so that expansion of one in terms of the other is meaningless 
and not applicable. Whereas, for the self-consistent field theory the problem 
comes from the fact that the energy-conserving constraint necessary for 
e l im ina t i on  o f  Hin t  in physical variables in the limit as V becomes large may 
not hold because of the time dependence introduced into Hin t through the 
adiabatic-switching factor. This may be overcome in this case, however, by 
using the alternative formulation in Section 3. 

(2) As already discussed in (1) above and in the preceding sections, both 
sets of methods are often based on the adiabatic theorem. The basic diffi- 
culties and reasons for these are discussed in (1) above and in Sections 3 
and 4. 

(3) As seen from the ferromagnetic models considered in Sections 2 and 
3, both sets of methods can reveal Goldstone-type modes if they exist. How- 
ever, as pointed out, these come much more naturally as part of the selt= 
consistent field theory, and as wilt be discussed in the differences, the 
importance and emphasis of these modes as a fundamental mechanism in 
physical phenomena is much different in these methods, being very basic in 
the self-consistent field theory while only incidental in the Green's functions 
methods. 

(4) Both sets of methods look for appropriate arrangements and combina- 
tions of  original variables, such as equations (2.1),. (2.2), (2.7), (2.t4), (3.1), 
and (3.7), in order to explain physical properties, but as can be seen from 
examining the foregoing equations and as will be discussed further in the 
differences, the manner in which this is done is very different. 

(5) The altered five-step self-consistent field theory in Section 3 and the 
functional integral approach, one of the methods involving finding Green's 
functions, of  Section 2 both involve looking for commutation of rio with 
Hint ,  This step leads to bilinearization of the Hamiltonian in physical vari- 
ables in the self-consistent field theory, whereas it leads to separation of the 
partition function into direct products in the functional integral method. In 
the case of ferromagnetic models, both of these led to the common ground 
of bilinearization of the theory in an effective magnetic field which depends 
upon the interaction potential, as discussed in Section 3. 

After looking at some of the similarities, let us now examine some of the 
differences. 

(1) The Goldstone theorem is an essential, necessary consequence in the 
self-consistent field theory (Umezawa et al., 1967), whereas, as pointed out 
in the itinerant ferromagnetic model in Section 2, this result for the Green's 
functions methods is typically an added feature that is often very difficult 
to determine and is not a part of the natural flow of the theory. 

(2) Green's function techniques focus on the original field variables and 
finding appropriate combinations of these in order to find expressions for 
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correlation functions, self energies, vertices, etc., whereas the self-consistent 
field theory focuses on actually finding how the original fields make up the 
observed, physical fields explicitly. Another way of expressing this is to say 
that in the usual way of handling many-body problems using the former 
methods, the given Hamiltonians (original variables) are usually the starting 
point of an ab initio calculation in the sense that the original Hamiltonians 
are directly responsible for the final results. However, it appears that this is 
often too restrictive since most Hamiltonians of physical models for many- 
body problems are not simple enough to yield solutions without some rather 
drastic approximations or mathematically doubtful operations. Therefore, it 
is physically interesting, while mathematically not necessarily more 
difficult, if one considers the initial Hamittonians as an abstract operator 
expression capable of being realized by certain operators satisfying simple 
algebraic relations. If the operators used for a particular realization enable 
us either to solve the eigenvalue problem of the given Hamiltonian or to 
derive an effective Hamiltonian of a simple form such that the problem 
becomes more manageable, then our goal is accomplished, if the operators 
satisfy commutation or anticommutation relations. If a perfect diagonaliza- 
tion is accomplished, then the particle interpretation of these operators 
corresponds to the "quasiparticles." These last three statements are then the 
basis of the self-consistent field theory, as contrasted with the Green's function 
methods which concentrates usually only on the original Hamiltonian. 

(3) As described in Section 3, the self-consistent field theory looks for the 
precise reason(s) why one sees a different symmetry expressed physically 
than that carried by the original Hamiltonian. Thus, another difference 
between the self-consistent field theory and the Green's function methods 
is that the former looks for the basic microscopic mechanism producing 
asymmetry, whereas the latter typically accepts this fact and goes from there 
to calculate physical parameters based upon original variables. The asym- 
metry seems to always be associated with the condensation of Goldstone- 
type particles into the physical ground state. One then usually proceeds to 
calculate physical parameters in the self-consistent field theory. 

(4) Due to the development of appropriate techniques using Green's 
functions (Matsubara, 1955), it seems much more natural to introduce tem- 
perature dependence using the Green's function techniques. This can, how- 
ever, be formulated in the self-consistent field theory (Leplae and Umezawa, 
1969), but it has not been concentrated on as yet. 

(5) As shown in Section 2, equations (2.9)' and (2.11) in particular, one 
most often introduces background potentials, asymmetric potentials, etc., 
into the original Hamiltonian when using the Green's function methods. On 
the other hand, in the self-consistent field theory one usually deals with the 
fully symmetric Hamiltonian to start with [see equation (3.14) for example]. 
Thus, one typically builds the asymmetric observations in when using the 
former methods, whereas one finds the basis of these observations in the 
latter method. This difference is directly related to the third difference stated 
above. 
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(6) From Section 4 the many-body theory based upon the adiabatic 
theorem using Green's function techniques encounters the difficulty of 
incomplete sets of states for expansion when going from one phase to 
another [see the discussion following equation (4.10)]. This problem is con- 
veniently handled in the self-consistent field theory by making a canonical 
transformation from one Hilbert space (specifying a given phase of the 
system) to another Hilbert space (specifying a different phase) (See Benson 
and Hatch, 1973). In a future paper, this will be further explored. 

(7) Last, but surely not least, as pointed out in the Introduction and 
Sections 2 and 3, they certainly differ in the choice of mathematical methods 
and "tricks" employed for achieving their goals. As pointed out at various 
places, however, there is also a lot of common ground here. For example, 
see numbers (1), (2), and (5) of the similarities above. 

Consequently, there are many similarities and differences between the 
Green's function methods and the self-consistent field theory method, and 
from our analysis it boils down to the fact that at this point the Green's 
function methods appear to be best for more immediate calculations of 
various functions from which physical parameters can be determined, 
whereas the self-consistent field theory method appears to be much better 
for understanding why the physical phenomena occur with these physical 
parameters and observed characteristics. 

6. Conclusion 

From the preceding sections, many useful ideas and methods have been 
drawn together and contrasted, in looking for central threads that may lead 
to a better understanding of the physical phenomena they try to describe. 
From the reviews, developments, and discussions we have found that there are 
a number of similarities and differences that exist between the self-consistent 
field theory and the Green's function methods. 

It is good to stop every so often and ask where are all these roads leading 
us? After all, we are trying to get to the same final goals, understanding the 
physical phenomena about us; and to try for unification, clarification, and 
correlation certainly wilt give further insight into the best road or combina- 
tion of roads to accomplish our goals, as it has many times in the past. 

Further investigations, aided by the preceding developments, will continue 
as we look for the best technique or best qualities of a number of techniques 
that may be most superior and productive in further linking together the 
methods for describing many physical systems. 
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